求数组中第k大的数
求一个数组中第k大的数,我第一印象是冒泡,因为只要冒泡k趟即可,第一趟冒泡第一大,第二次冒泡第二大,第k次冒泡第k大,时间复杂度为O(kn),n为数组长度。但是我们都知道快速排序是对冒泡的改进,降低冒泡的递归深度,使时间复杂度降低到O(nlgn),为什么不用快排呢?那么快排的时间复杂度又是多少呢?
因为快排每次将数组划分为两组加一个枢纽元素,每一趟划分你只需要将k与枢纽元素的下标进行比较,如果比枢纽元素下标大就从右边的子数组中找,如果比枢纽元素下标小从左边的子数组中找,如果一样则就是枢纽元素,找到,如果需要从左边或者右边的子数组中再查找的话,只需要递归一边查找即可,无需像快排一样两边都需要递归,所以复杂度必然降低。
最差情况如下:假设快排每次都平均划分,但是都不在枢纽元素上找到第k大
第一趟快排没找到,时间复杂度为O(n),第二趟也没找到,时间复杂度为O(n/2),。。。。。,第k趟找到,时间复杂度为O(n/2k),所以总的时间复杂度为
O(n(1+1/2+….+1/2k))=O(n),明显比冒泡快,虽然递归深度是一样的,但是每一趟时间复杂度降低。
快排求第k大数代码如下:
|
|